N35 - SOLUTIONS

K_{sp}

N35 - SOLUTIONS

Target: I can perform K_{sp} calculations to determine the solubility of different salts.

Just application of old info!

Just application of old info!

Equilibrium constants and ICE Tables.

Only real difference is that your reactant is always a solid so it doesn't show up in the Law of Mass Action.

But that isn't "new" – we've known that forever!

Solubility Chart

A solubility chart is a qualitative distinction!

When we say insoluble, we mean so little dissociates that it isn't practical. A few will still dissociate!

Can do math to see how much dissociates.

Solubility of Some Ionic Compounds in Water		
Always Soluble	2	
Alkali metals =	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	
Ammonium =	NH ₄ ⁺	AAA
Acetate =	C ₂ H ₃ O ₂ -	CNP
Chlorate =	CIO ₃ -	
Nitrate =	NO ₃ -	
Perchlorate =	CIO ₄ -	
Generally Solu	<u>ble</u>	
Cl-, Br, l-	Soluble <u>except</u> : Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺	AP-H
F-	Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Mg ²⁺	CBS-PM
Sulfate = SO ₄ ² -	Soluble except: Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺	CBS-P
Generally Inso	luble	
O ²⁻ , OH ⁻	Insoluble <u>except</u> : Alkali metals and NH ₄ ⁺	AA
	Somewhat soluble: Ca ²⁺ , Ba ²⁺ , Sr ²⁺	CBS
CO ₃ ²⁻		
S ²⁻ , SO ₃ ²⁻	Insoluble except: Alkali metals and NH ₄ +	AA
PO ₄ ³⁻		
CrO ₄ ²⁻ , Cr ₂ O ₄ ²⁻		

Not Soluble = forms precipitate

Soluble = dissolves in water (aqueous)

Solubility Product

K_{sp} is called the solubility product

Example:

$$AgBr_{(s)} \rightarrow Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

$$K_{sp} = [Ag^+][Br^-]$$

Solubility of Some Ionic Compounds in Water		
Always Soluble	9	
	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	
Ammonium =	NH ₄ ⁺	AAA
Acetate =	C ₂ H ₃ O ₂ -	CNP
Chlorate =	CIO ₃ -	
Nitrate =	NO ₃ -	
Perchlorate =	CIO ₄ -	
Generally Solu	<u>ble</u>	
Cl⁻, Br⁻-, l⁻	Soluble except: Ag+, Pb2+, Hg22+	AP-H
F-	Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Mg ²⁺	CBS-PM
Sulfate = SO ₄ ² -	Soluble except: Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺	CBS-P
Generally Inso	<u>luble</u>	
O ²⁻ , OH ⁻	Insoluble <u>except</u> : Alkali metals and NH ₄ ⁺	AA
	Somewhat soluble: Ca ²⁺ , Ba ²⁺ , Sr ²⁺	CBS
CO ₃ ²⁻		
S ²⁻ , SO ₃ ²⁻	Insoluble except: Alkali metals and NH ₄ +	AA
PO ₄ ³⁻		
CrO ₄ ²⁻ , Cr ₂ O ₄ ²⁻		

Not Soluble = forms precipitate

Soluble = dissolves in water (aqueous)

K_{sp} Values for Some Salts at 25°C

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6 x 10 ⁻⁹
Barium chromate	BaCrO ₄	1.2 x 10 ⁻¹⁰
Barium sulfate	BaSO ₄	1.1 x 10 ⁻¹⁰
Calcium carbonate	CaCO ₃	5.0 x 10 ⁻⁹
Calcium oxalate	CaC ₂ O ₄	2.3 x 10 ⁻⁹
Calcium sulfate	CaSO ₄	7.1 x 10 ⁻⁵
Copper(I) iodide	CuI	1.3 x 10 ⁻¹²
Copper(II) iodate	Cu(IO ₃) ₂	6.9 x 10 ⁻⁸
Copper(II) sulfide	CuS	6.0 x 10 ⁻³⁷
Iron(II) hydroxide	Fe(OH) ₂	4.9 x 10 ⁻¹⁷
Iron(II) sulfide	FeS	6.0 x 10 ⁻¹⁹
Iron(III) hydroxide	Fe(OH) ₃	2.6 x 10 ⁻³⁹
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸

Name	Formula	K _{sp}
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸
Magnesium carbonate	MgCO ₃	6.8 x 10 ⁻⁶
Magnesium hydroxide	Mg(OH) ₂	5.6 x 10 ⁻¹²
Silver bromate	AgBrO ₃	5.3 x 10 ⁻⁵
Silver bromide	AgBr	5.4 x 10 ⁻¹³
Silver carbonate	Ag ₂ CO ₃	8.5 x 10 ⁻¹²
Silver chloride	AgCI	1.8 x 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	1.1 x 10 ⁻¹²
Silver iodate	AgIO ₃	3.2 x 10 ⁻⁸
Silver iodide	AgI	8.5 x 10 ⁻¹⁷
Strontium carbonate	SrCO ₃	5.6 x 10 ⁻¹⁰
Strontium fluoride	SrF ₂	4.3 x 10 ⁻⁹
Strontium sulfate	SrSO ₄	3.4 x 10 ⁻⁷
Zinc sulfide	ZnS	2.0 x 10 ⁻²⁵

Ksp isn't always the most useful value

You can't always <u>directly</u> compare the solubility of substances based on their K_{sp} values because the stoichiometry comes into play also.

AgCl vs CaCl₂ 2 ions 3 ions

Instead we will use a value that we calculate that allows us to compare the solubility of two compounds more directly.

Expressing Solubility

We typically describe the solubility as how much solute can you dissolve in how much solvent.

Moles / Liter - 0.25 moles will dissociate in 1 L sol'n **Grams / Liter Etc...**

(Always check what units it wants answers in!)

This value is called the Molar Solubility Usually represented by "s"

Solving Solubility Problems

Calculate molar solubility for AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$

$Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$

I	0	0
С	+X	* *
Е	X	×

$$K_{sp} = [Ag^+][I^-]$$

Nothing on the denominator because the reactant was a solid!

$$1.5 \times 10^{-16} = \times^2$$

X = **S** = molar solubility of Agl in mol/L

 $= 1.2 \times 10^{-8} M$

Meaning:

1.2 x 10⁻⁸ moles of Ag⁺ and I⁻ can be present per 1 L of sol'n before the sol'n is saturated.

Or...you can get 1.2 x 10⁻⁸ moles of **Agl** to dissociate per L of sol'n

Solving Solubility Problems

Calculate molar solubility for AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$

$$Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$$

I	0	0
С	+\$	+ \$
E	S	S

$$K_{sp} = [Ag^+][I^-]$$

Nothing on the denominator because the reactant was a solid!

$$1.5 \times 10^{-16} = s^2$$

s = molar solubility of Agl in mol/L

 $= 1.2 \times 10^{-8} M$

Meaning:

1.2 x 10⁻⁸ moles of Ag⁺ and I⁻ can be present per 1 L of sol'n before the sol'n is saturated.

Or...you can get 1.2 x 10⁻⁸ moles of AgI to dissociate per L of sol'n

Solving Solubility Problems When Not 1:1

Calculate molar solubility for PbCl₂ at 25°C, $K_{sp} = 1.6 \times 10^{-5}$

Meaning:

1.6 x 10⁻² mol of Pb²⁺ and 3.2 x 10⁻² mol of Cl⁻ can be present per 1 L of sol'n before the sol'n is saturated.

Or...you can get 1.6 x 10⁻² moles of PbCl₂ to dissociate per L of solution $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$

I	0	0
С	+5	+2s
E	S	2 s

Be careful with the stoichiometry!

$$1.6 \times 10^{-5} = (s)(2s)^2 = 4s^3$$

s = molar solubility of PbCl₂ in mol/L = $1.6 \times 10^{-2} M$

The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

- **A** 3.38E⁻⁹
- **B** 4.50E⁻⁶
- C 1.35E⁻⁸
- D 1.50E⁻³
- **E** none of these

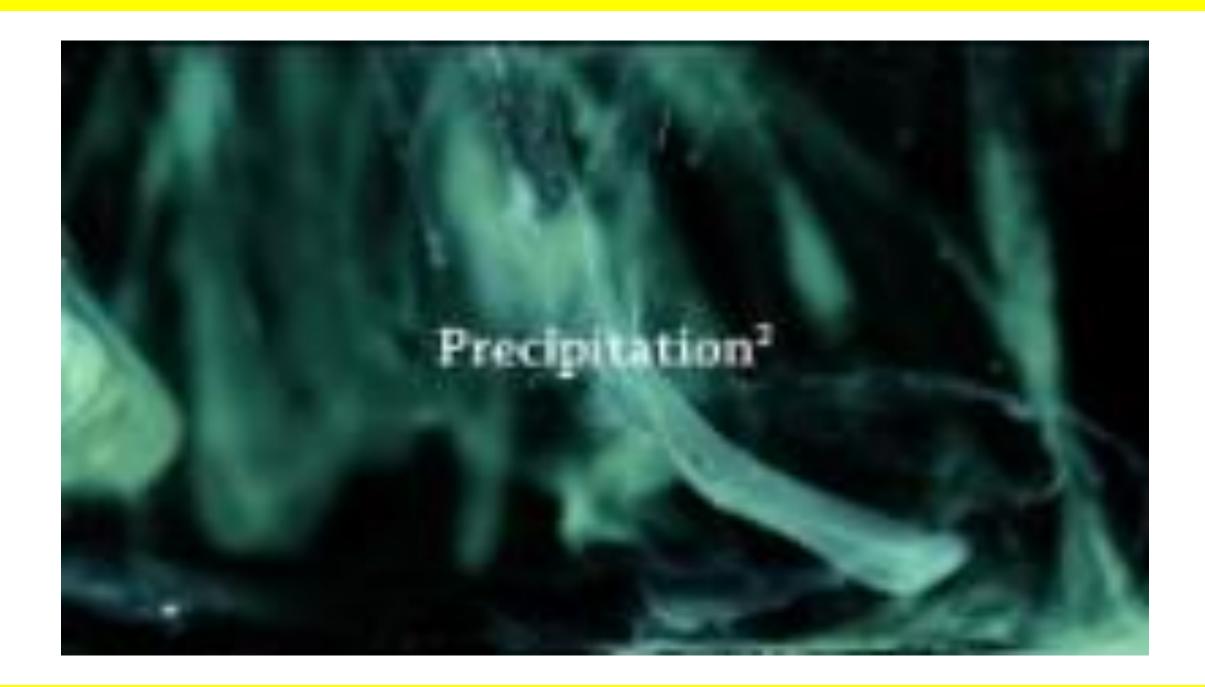
The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

B 4.50E ⁻⁶

135	F-8

D	1.50E ⁻³
	1.50

Pbl _{2 (s)}	\leftrightarrow	Pb ²⁺ (aq)	+	2I ⁻ (aq)
_		0		0
-		+ S		+ 2s


$$K_{sp} = (s)(2s)^{2}$$
 $K_{sp} = 4(s)^{3}$
 $K_{sp} = 4(1.5 \times 10^{-3})^{3}$
 $K_{sp} = 1.35 \times 10^{-8}$

Will Something Precipitate?

Have to check Q versus K!

Q < K _{sp}	No precipitate yet! The solution is unsaturated. All ions are still dissociated.
Q = K _{sp}	No precipitate yet! The solution is saturated. The maximum amount of ions are dissociated.
Q > K _{sp}	A precipitate will form! The maximum amount of ions are already dissociated, so the extra will "crash out" as a solid precipitate.

Note Supersaturated solutions have $Q > K_{sp}$ but a ppt hasn't crashed out yet because it was made at a higher temperature and slowly cooled down. It is unstable and the ppt will crash out once the sol'n is disturbed.

Common Ion Effect

What happens to the solubility of a substance if one of its ions is already present in the solution?

Will the solubility increase or decrease????

It decreases!

Let's redo this problem but this time let's have some la already

For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ AgI(s) \rightarrow Ag⁺(aq) + I⁻(aq) s = solubility of AgI in mol/L = 1.2 x 10⁻⁸ M

in the solution. x should end up less than 1.2 x 10⁻⁸ mol/L

Solving Solubility with a Common Ion

For the salt Agl at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ What is its solubility in 0.05 M Nal?

 $Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$

I	0	0.05
C	+\$	+\$
E	S	0.05+s

5% rule!

$$1.5 \times 10^{-16} = (s)(0.05+s) \cong (s)(0.05)$$

s = solubility of AgI in mol/L = $3.0 \times 10^{-15} M$

Qualitatively describing how adding something changes solubility

Another Salt:

Look to see if the dissociated ions are in common

BaCl₂ + NaCl

Ba²⁺ 2Cl⁻ Na⁺ Cl⁻

Cl⁻ is in common with BaCl₂, so it will decrease the solubility.

BaCl₂ + NaF

Ba²⁺ 2Cl⁻ Na⁺ F⁻

F⁻ is NOT in common with BaCl₂, so it will not change the solubility.

Qualitatively describing how adding something changes solubility

Adding an Acid:

Look to see if the dissociated ions will react with one of the ions from the salt.

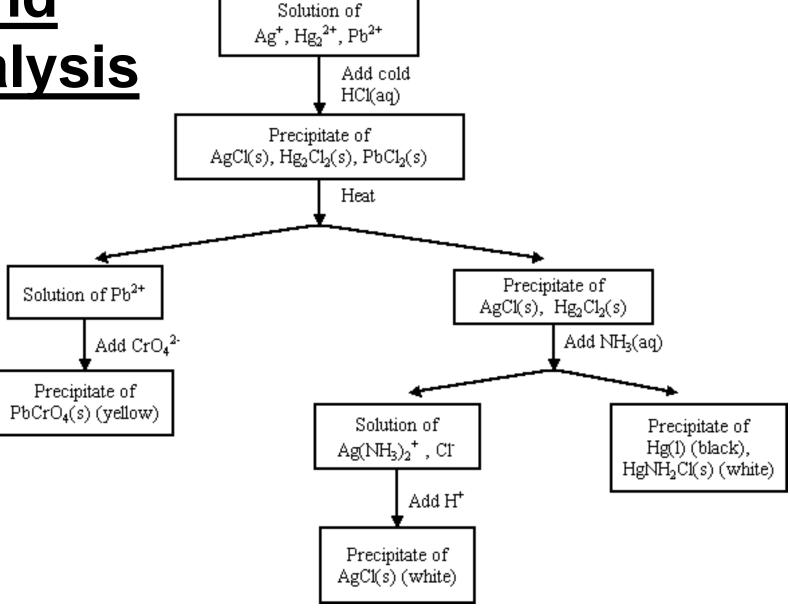
H⁺ and Cl⁻ make a strong acid which stays dissociated.
Doesn't affect the solubility of BaCl₂

H⁺ and F⁻ make a weak acid which doesn't dissociate fully!

Removes F⁻ ions from solution. Increases the solubility of CaF₂, trying to replace F⁻ ions

In which solution is BaSO₄ most soluble?

- A solution that is 0.10 M in Ba(NO_3)₂
- B A solution that is 0.10 M in Na₂SO₄
- C A solution that is 0.10 M in NaNO₃
- None of these, solubility never changes, it is a set value

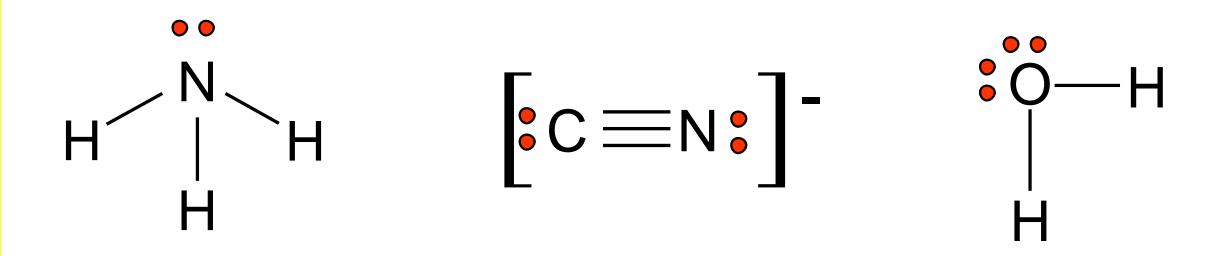

In which solution is BaSO₄ most soluble?

- A solution that is 0.10 M in $Ba(NO_3)_2$
- B A solution that is 0.10 M in Na₂SO₄
- C A solution that is 0.10 M in NaNO₃
- None of these, solubility never changes, it is a set value

The others have common ions that would drive equilibrium position to the left, resulting in less dissociation of the ions

Precipitation and Qualitative Analysis

Not in the class anymore!


FYI - Complex Ions

Complex ion - a charged species composed of:

- 1. A metallic cation
- 2. Ligands

Ligand – Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

NH₃, CN⁻, and H₂O are Common Ligands

NOTE A lot of Lewis acids/bases act as ligands. They are often involved in solubility problems, which is why we tend to put K_{sp} in the Acid Base chapter and not always Equilibrium or Solutions chapters.

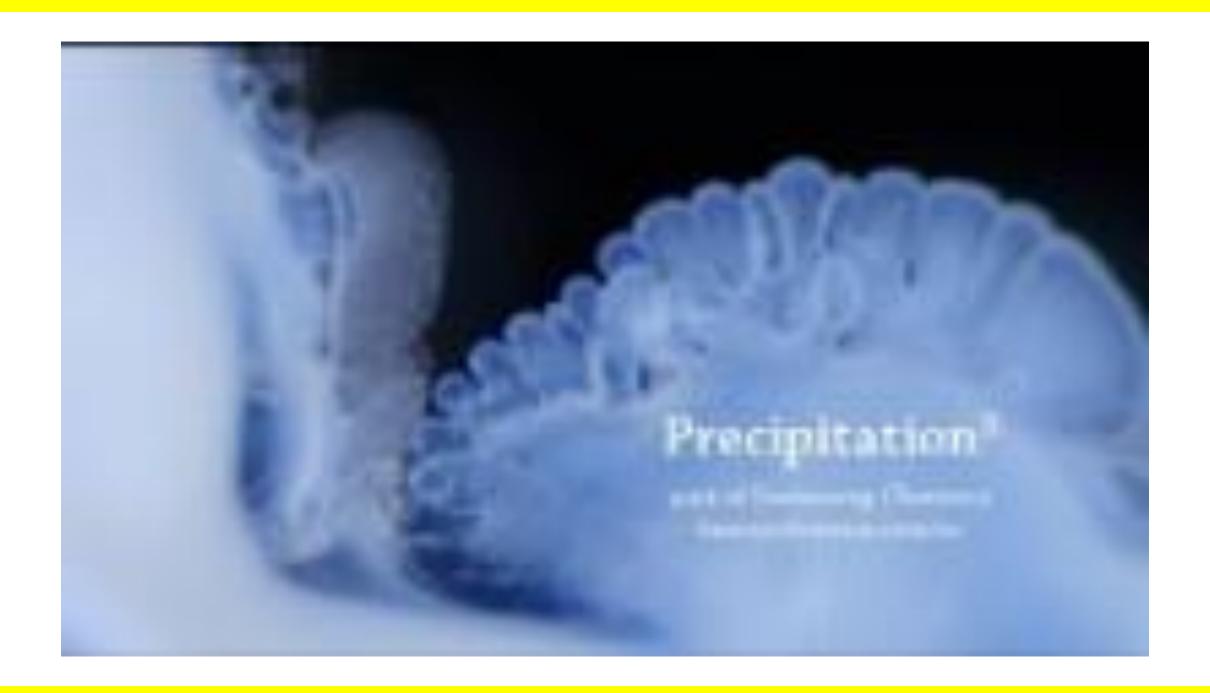
Coordination Number

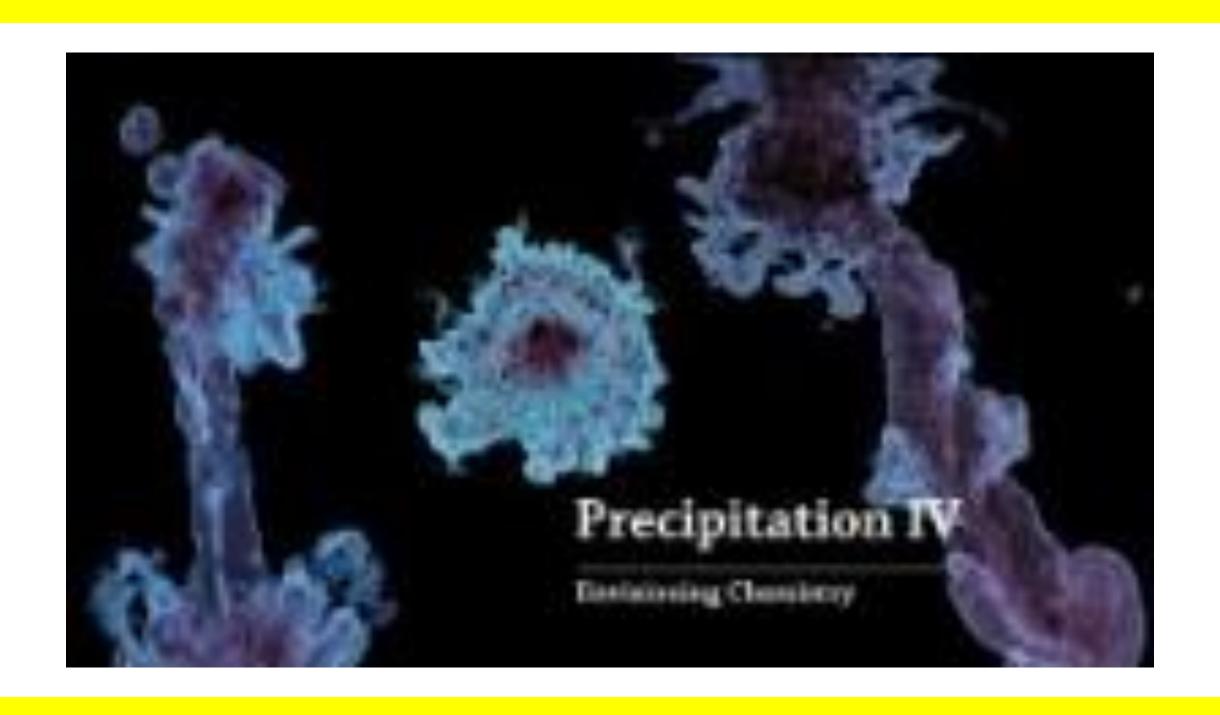
Coordination number

The number of ligands attached to the cation

2, 4, and 6 are the most common coordination numbers

Coordination #	Example(s)	
2	Ag(NH ₃) ₂ ⁺	
4	CoCl ₄ ²⁻ Cu(NH ₃) ₄ ²⁺	
6	Co(H ₂ O) ₆ ²⁺ Ni(NH ₃) ₆ ²⁺	


Complex Ions and Solubility


$$AgCl(s) \leftrightarrows Ag^{+} + Cl^{-}$$
 $K_{sp} = 1.6 \times 10^{-10}$
 $Ag^{-} + NH_{3} \leftrightarrows Ag(NH_{3})^{+}$ $K_{1} = 2.1 \times 10^{3}$
 $Ag(NH_{3})^{+} NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+}$ $K_{2} = 8.2 \times 10^{3}$
 $AgCl + 2NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+} + Cl^{-}$ $K = K_{sp} \cdot K_{1} \cdot K_{2}$

$$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2}$$

Some more pretty precipitation videos if you are interested

YouTube Link to Presentation
This is an old version of the lecture, back when it used to be in the Acid Base chapter. If I get time I will update this with a new video for this AP lecture.

https://youtu.be/LWIR91gx-ac